ऑल मैथ वेबसाइट के अनुसार, बीजगणित गणित का क्षेत्र है "अक्षरों के साथ संख्याओं का प्रतिनिधित्व करने में काम करना।" बीजगणित को समझना कैलकुलस और भौतिकी जैसे उच्च-स्तरीय गणित को सीखने और लागू करने का आधार है। बीजगणित SAT और GED दोनों परीक्षणों पर है। जिन परिवर्तनों के लिए बीजगणित की निपुणता की आवश्यकता होती है, उनमें इलेक्ट्रॉनिक्स, इंजीनियरिंग, कंप्यूटर विज्ञान, चिकित्सा अनुसंधान और विश्लेषक शामिल हैं। सभी बीजगणित अवधारणाएं इस बुनियादी गणितीय रैखिक समीकरण में निर्मित होती हैं: एक्स + ए = बी, जहां ए और बी ज्ञात मात्रा हैं।
ए और बी के लिए दिए गए नंबरों का उपयोग करते हुए समीकरण को फिर से लिखें इस उदाहरण के लिए, समीकरण X + A = B है, जहां A = 5 और B = 9. फिर से लिखा गया है, इस समीकरण में X + 5 = 9. X समीकरण है। चर के रूप में जाना जाता है।
समीकरण के प्रत्येक पक्ष से समान राशि घटाएं ताकि X (चर) समीकरण के एक तरफ हो और ज्ञात संख्याएं दूसरी तरफ हों। हमारे उदाहरण के लिए: X + 5 - 5 = 9 - 5. गणित को काम करते हुए, समीकरण अब X = 4 को पढ़ता है।
मूल बीजीय समीकरण में अपने उत्तर के साथ एक्स को बदलें, यह देखने के लिए कि क्या समाधान सही है। X + 5 = 9, जहां X = 4 को फिर से लिखा गया है 4 + 5 = 9. क्योंकि 4 + 5 बराबर 9 करता है, आप सुनिश्चित कर सकते हैं कि आपको इस समीकरण के लिए सही X कारक मिल गया है।